A Modular Systems Engineering Approach to Advanced Fuze Design and Development

Ву

Brett J. Helgeson
ATK Precision Fuze Company (APFC)
MN07-LW56
4700 Nathan Lane North
Plymouth, Minnesota 55442-2512 USA

(763) 744-5402 Phone (763) 744-5829 Fax

Overview

- Fuzing Challenges
- Case Study in Bomb Fuzing
- Modular Fuzing Approach/Benefits
- Systems Engineering applied to modular bomb fuze approach
- Critical Success Factors
- Summary

Challenges to New Fuze Development Initiatives

Case Study – Needs of Bomb Fuzing

- Target Sets are becoming much more complex Hardened
- New weapons systems in development require additional functionality which is not provided in presently qualified fuzes
- Capability is needed quickly and is conflict specific
- Increased fuze intelligence for precision
- Expansion of ordnance envelop
- Smaller quantities of fuzes required, but larger quantity price desired.

Application of Approach to Bomb Fuzing

- Qualify the architecture and components
- Allows customers to pick and choose modules

Modular Bomb Fuze Architecture/Form Factor

Modular fuze form factor would be optimized based on application requirements. Package could be in 2-3 inch form factor. (Small package desirable for survivability)

Benefits of Modularity

- Quick removal/additional of functionality
- Cycle Time to develop new configurations can be minimized by reusing existing modules and coupling with new modules
- Easy modification of any module without affecting other modules
- Configurations can be optimized for cost, performance, customer need
- Ability to grow or shrink size of fuze based on application requirements
- High degree of component reuse driving down parts costs
- Modules can be built and tested as complete stand alone assemblies prior to integration into final potted configuration
- Can be fully tested as a fuze system prior to potting

Identify key stakeholders (Stakeholder Diagram)

Approach to Defining Modular Fuze Requirements

Elicit Customer/Stakeholder wants and desires

Define Key Fuze
Performance Characteristics

Determine Fuze Features

Allocate Fuze Features into HW, SW or COTS

QFD

FMEA

Process													
Step	Failure Mode	Effect	Sev	Cause	Осс	Control	Det	RPN	Corrective Action	Sev	Осс	Det	RPN
							1						
			_				1						
	1			ı					ı				

Partition Features Into Physical HW/SW Modules

Define Resuable Module Requirements/Interfaces HW/SW

Define Fuze Family

Qualify Fuze Family
Page 9

Traceability

Approach to Qualification of Family of Fuzes

Develop high Performance Penetrator

Remove
Media Discrimination to
create Basic Penetrator

Simultaneously
Qualify
Multiple Configurations

Develop Future Variants

- One design cycle results in multiple qualified fuzes configurations
- Significant synergies of design, parts, software, processes, manufacturing and materials
- Reduced development cost and cycle time
- Increased reliability based on continuous improvement of common modules
- Low risk approach reuses already proven and qualified components
- Provides great baseline for growth

Critical Success Factors

Rigorous requirements development, allocation, flowdown and traceability to qualification

Tight relationship between designer and customers/stakeholders

Success Focus on Key Performance Parameters

Early involvement and buyin of safety community as a stakeholder in definition of fuze environments

Early application of Design for Six Sigma, Lean Design Principles

Summary

- Applications of sound systems engineering principles allows development of:
 - Modular fuzing with increased flexibility for developing future families of fuzes
 - Modular fuzing with decreased product development cycle time, nonrecurring development cost and providing path to low recurring costs
 - Modular fuzing providing increased flexibility to provide the diverse fuzing community needs.

